Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-Bromo-2-(1-naphthyliminomethyl)phenol

Xi-Shi Tai,^{a*} Jie Yin^b and Yi-Min Feng^a

^aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China

Correspondence e-mail: taixishi@lzu.edu.cn

Key indicators

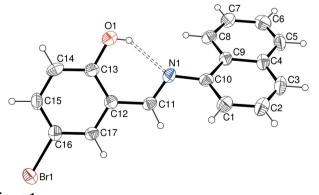
Single-crystal X-ray study $T=294~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.012~\mathrm{Å}$ R factor = 0.066 wR factor = 0.171 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The conformation of the title compound, $C_{17}H_{12}BrNO$, is dictated by an intramolecular $O-H\cdots N$ hydrogen bond.

Received 9 January 2007 Accepted 10 January 2007

Comment


As part of our ongoing studies (Tai *et al.*, 2005) on the synthesis, characterization and properties of Schiff base ligands and their metal complexes, we now report the synthesis and structural characterization of the title compound, (I) (Fig. 1).

$$\begin{array}{c}
HO \\
H \\
C \\
BI
\end{array}$$
(I)

In the molecule of (I), the C11 \equiv N1 [1.298 (9) Å] and C13 \equiv O1 [1.363 (9) Å] bond lengths are those expected for a double and single bond, respectively. The dihedral angle between the mean planes of the C1 \equiv C4/C9/C10 and C12 \equiv C17 benzene rings is 53.1 (4)°. An intramolecular O \equiv H \cdots N hydrogen bond (Table 1) helps to establish the molecular conformation.

Experimental

5-Bromosalicylaldehyde (10 mmol) was added to a solution of 1-naphthylamine (10 mmol) in 10 ml of $\rm CH_3CH_2OH$. The mixture was

The molecular structure of (I), showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). The intramolecular hydrogen bond is indicated by a double dashed line.

© 2007 International Union of Crystallography All rights reserved

organic papers

continuously stirred for 3 h at refluxing temperature, evaporating some ethanol; the product was then collected by filtration and dried *in vacuo* (yield 86%). Elemental analysis calculated for $C_{17}H_{12}BrNO$: C 60.57, H 3.68, N 4.29%; found: C 60.46, H 3.38, N 4.50%. Single crystals of (I) were obtained by evaporation of an ethanol solution after two weeks.

Crystal data

C ₁₇ H ₁₂ BrNO	Z = 4
$M_r = 326.19$	$D_x = 1.542 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 25.467 (7) Å	$\mu = 2.92 \text{ mm}^{-1}$
b = 4.3831 (13) Å	T = 294 (2) K
c = 12.587 (4) Å	Block, colourless
$\beta = 90.238 (5)^{\circ}$	$0.22 \times 0.20 \times 0.18 \text{ mm}$
$V = 1405.0 (7) \text{ Å}^3$	

Data collection

Bruker SMART CCD	5365 measured reflections
diffractometer	2444 independent reflections
ω scans	1574 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.050$
(SADABS; Bruker, 2000)	$\theta_{\rm max} = 25.0^{\circ}$
$T \cdot = 0.566 \ T = 0.622$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0495P)^2]$		
$R[F^2 > 2\sigma(F^2)] = 0.066$	+ 6.3049P]		
$wR(F^2) = 0.171$	where $P = (F_0^2 + 2F_c^2)/3$		
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$		
2444 reflections	$\Delta \rho_{\text{max}} = 0.76 \text{ e Å}^{-3}$		
182 parameters	$\Delta \rho_{\min} = -0.55 \text{ e Å}^{-3}$		
H-atom parameters constrained			

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ \cdots A	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1-H1···N1	0.82	2.02	2.666 (7)	135

The H atoms were geometrically placed (O-H = 0.82 Å, C-H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$ or $1.5 U_{eq}(O)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (20671073), NingXia Natural Gas Transferring Key Laboratory (2004007), the Science and Technology Foundation of Weifang and Weifang University for a research grant.

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Tai, X.-S., Liu, W.-Y., Liu, Y.-Z. & Li, Y.-Z. (2005). Acta Cryst. E61, o389-o390.